
D-Ai58 582 SYNTHESIS OF TREE-STRUCTURED COMPUTING SYSTEMS THROUGH i/1
USE OF CLOSURES(U) KESTREL INST PRLO RLTO CA R KING
29 NOV 84 KES-U-84-6 AFOSR-TR-85-865 F49620-82-C-8887

UNCLASSIFIED F/G 9/2 NL

I'll'.

gL.-
3

-t' WTI i wc
t -. - . -- . - .4

j.U.

IIIII IIIL i122
L3 2 1202

11111 ii1.8

11111L25 hI1.lfj 6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 196, A

,AIOSR.TR" 8 5 0 0 6 5

KES.U.84.6

* •Synthesis of Tree-Structured

0 Computing Systems Through Use of ClosuresOdn

0 by

S In
Richard M. King

* I Cordell Green
Principal Investigator

Kestrel Institute
1801 Page Mill Road

. Palo Alto, CA 94304

FINAL TECHNICAL REPORT

November 1984

Prepared for: B ~ B I
Air Force Office of Scientific Research W

Building 410
* Boiling AFB, DC 20332 W

Research sponsored by the Air Force Office of Scientific Research (AFSC), United States Air
Fore., under contract F49620-82-C-0007. The United States Government is authorized to

reproduce and distribute reprints for governmental purposes notwithstanding any copyright

* notation hereon.

This document was prepared under the sponsorship of the Air Force. Neither the U. S.

Government nor any person acting on behalf of the U. S. Government assumes any liability
resu'ting from the use of the information contained in this document.

-pproved for publi. release 3

distribut LOn unlimitedo -

;: ..--........... _ __--
"- "": " -"""""" ""'

"
-"*' "''" "- "

*
"" ' " "" ' " "" " "

"' " '
'"

?

4 UNCLASSIFIEDI
-' SECURITY CLASSIFICATION OF THIS PAGE

REPORT D)OCUMENTATION PAGE
I& REPORT SECURITY CLASSIFICATION Iti RESTRICTIVE MARKINGS

U NCLASSIFIED_______________________

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAI LABILITY OF REPORT

__________________________________Approved for public release; distribution
2b OECLASSIFICATION/OOWNGRAOING SCHEDULE unlimited.

a PERFORMING ORGANIZATION REPORT NUMBERIS) S. MONITORING ORGANIZATION REPORT NUMBER(S)

KES.U.84.6 AFOSR.TR- 85 -0 06 5
6& NAME Of PERFORMING ORGANIZAT ION ~b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Kestrel Institute jAir Force Office of Scientific Research

6c. ADDRESS f~ir. State and ZIP Code, 7b. ADDRESS (City, State and ZIP Code)
1801 Page Mill Road Directorate of Mathematical & Information
Palo Alto CA 94304 Sciences, Bolling AFB DC 20332-6448

84 NAME OF FUN0iNG/SPONSORING Sb. OFFICE SYMBOL S. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (it applicable)

* AFOSR NM F49620-82-C-0007
St ADDRESS (CiI. State and ZIP Code 1 10 SOURCE OF FUNDING NOS

4PROGRAM PROJECT TASK WORK UNIT
ELE ME NT NO, NO. NO. NO

Bolling AFB DC 20332-6448 61102F 2304 A2
ii TITLE hlnclude Securi4 classification,

SYNTHESIS OF TREE-STRUCTURED COMPUTING SYSTEMS THROUGH USE OF CLOSURES,-
* 12. PERSONAL AUTHORIS)

* Richard King_________________________
13. TYPE OF REPORT 13b. TIME COVERED 14 OTi OF REPORT (Yr. Mo.. D" I 15.PAGE COUNT

Final FROMJJJ J8.a T0 j~a& 29 NOV 84 4
10 SUPPLEMENTARY NOTATION

17 COSATI CODES IS. SUBJECT TE RMS fContane an reivrs if necessary and identify, by block numeiW~

FIELD GROUP SUB GR Multi-processor synthesis; tree-structured multiprocessors;
1concurrency; closures; divide and conquer; trees; actors.

19, ABSTRACT (Continue an IVIIeFU if necesary and identify by btock number)

During this past year the investigators have concerned themselves with the synthesis of tree
structures. These structures offer, in the opinion of the investigators, the best hope of

8 achieving subpolynomial running times for typical problems without a degree of inter-
connection that makes physical implementation difficult.

one would like to be able to synthesize trees using divide and conquer. Divide and conquer
is an appealing techuique for tree synthesis because of. the isomorphism between the shape of

4 the desired syntheisized system and the recursive descent implicit in divide and conquer.
Additionally, the technique makes good use of theorem proving techniques which are rapidly

* being developed for other purposes. Certain problems arise, however, when one tries to use
divide and conquer to synthesize a tree-structured computing system. The exact character-
istics of the problems that can arise fall into three categories, to be described below, but

* the basic difficulty is that nodes that are high in the tree are required to either (CONT.)

4 20 OISTRISUTION/AVAILABILITY OF ABSTRACT 21. ABSTR4ACT SECURITY CLASSIF ICATION

UNYCLASSIPIEO/UNLIMITED K' SAME AS APT. 0 oTic USERPs C UNCLASSIFIED

22. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL
(include Ara Code)

Dr. Robert N. Buchal 1(202) 767- 4939 NM

* OD FORM 1473, 83 APR EDITION OF I JAIN 73 IS OBSOLETE, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PA(

" UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

ITEM #19, ABSTRACT, CONTINUED: compute or communicate large amounts of data.

The investigators' primary solution to this problem is to replace the original specification
which in general declares the existence of an output array that depends on various elements
of the input array, into an equivalent specification which declares the existence of a
certain closure, or specialized functional object, together with a declaration that it be
applied. Constraints are imposed on the closure so that application of this closure will
have the desired effect. The investigators show that closures can be computed and applied

rapidly, in time 0(log in) for small, constant i on problems of size n, even in many cases

where the normal results of divide and conquer would be a computation that could only be

performed in time 0(nJ) for strictly positive constant j.

The investigators have also found an interesting synthesis path for several binary addition
circuits that uses this technique and another technique called quantifier levelling.

0

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

• """ ' " " • " " . : " i '-: : ..- .". .'" " " ". ".'' " " i " . . - " - " - '' i
. ~ - . -

Accession For

NTIS GRA&I Cnet
Unannounced rjCnet

By-

-Distri~:: ~ -

Dist

Par

Abstract......

Chapter 0 Trees of Processors..2

Chapter I Closure-Assisted Divide & Conquer or, LAMDA: The Ultimate Transceiver . .. 5
1.1 Motivation.................. 5
1.2 Divide & Conquer Pa~radigm and Ties Synthesis. 5
1.3 Description of Closures
1.4 Transmitting a Closure....
1.5 Formal Arguments for the Admissibility of Closures 11

Chapter 2 Examples of the Use of Closures 14
2.1 The Handshake Problem 14
2.2 Divide-and-Conquer 'with Closures. 15

2.2.1 Broadcast 15
2.2.2 Parallel Prefix. 16

2.2.2.1 Overview 16
2.2.2.2 Derivation. 16

2.2.3 Connected Components 20
2.2.3.1 Derivation of a Tree Structure 21
2.2.3.2 Alternative Data Structures 24
2.2.3.3 Results of Storing the Map in the Leaves 26
2.2.3.4 Results of Storing the Map in Internal Nodes.

Chapter 3 Use of Additional Techniques - Binary Addition 31
3.1 Notation. 31
3.2 Carry Look-ah~ead Circuit. 32

3.2.1 Quantifier Levelling 32
3.2.2 Data Path Width Reduction 34

3.3 Ripple-carry and Bit Seria) Circuits. 35

R eferences 37

All? TOM 071 C 1 sCl~xI71C pSrtp? (,k"
NOTI CX OF RANSXZ TA.L TO D
This t~hilict rqpo *t n *1:.

approved f~~~~- ~9.~~;~*

Wef, ftebsa Information Division

Plates

Page
Figure 1. Simplified Patallel Prefix Internal Node. 11
Figure 2. Our "Standard" Specification of Binary Addition 31
Figure 3. "Grade School"M Specification !or Binary Addition 32
Figure 4. Synthesised Look-Ahead Circuit for Binary Addition. 34
Figure 5. Ripple Carry Parallel Structure. 36
Figure 6. Serial Adder. 36

0%

Abstract

During this past year we have concerned ourselves with the synthesis of tree structures. These
structures offer, in our opinion, the best hope of achieving subpolynomial running times for typi-
cal problems without a degree of interconnection that makes physical implementation difficult.
One would like to be able to synthesise trees using divide & conquer. Divide & conquer is an
appealing technique for tree synthesis because of the isomorphism between the shape of the
desired synthesized system and the recursive descent implicit in divide & conquer. Additionally,
the technique makes good use of theorem proving techniques which are rapidly being developed
for other purposes (see [Smith-81). Certain problems arise, however, when one tries to use
divide & conquer to synthesize a tree-strucured computing system. The exact characteristics
of the problems that can arise fall into three categories, to be described below, but 'the basic
difficulty is that nodes that are high in the tree are required to either compute or communicate
l:.rge amounts of data.

Our primary solution to this problem is to replace the original specification, which in general
declares the existence of an output array that depends on various elements of the input array,
into an equivalent speciication which declares the existence of a certai closure, or specialized
f'tnctional object, together with a declaration that it be applied. 6 onstraints are imposed on
the closure so that application of this closure will have the desired effect. We show that closures
c -in be computed and applied rapidly, in time O(log n) for small, constant i on problems or size
n, even in many cases where the normal results of divide & conquer would be a computation
tat could only be performed in time O(ni) for strictly positive constant j.

We have also found an interesting synthesis path for several binary addition circuits that uses
t'iis technique and another technique called quantifier levelling.

/ t

.. - . . * - . . - . . -.U , , - . - -. . . : . - . - . - .

70~ ~~ 7.-7--

Chow, ter 0

Trees of Processors

In tlis report we examine one class of methods for producing highly concurrent architectures.
The: e architectures are vitai to meet the needs for sufficiently fast computation to make certain
proltlems practical. Automatic systems for the synthesis of these architectures are therefore
important because hand crafting is a difficult, expensive and error-prone process. In this report
we explore the synthesis of tree-structured architectures. Other architectures have been explcred
in prior reports ([King-831, (KlngBrown-82).

Trees of processors can be used to efficiently implement many specifications because the tree is
that topology with fixed arity and lowest connectivity that allows a distinguished node to have
contact with all other nodes in O(log n) steps, which is clearly the best possible. TRANSCONS
([King-83]) therefore has facilities for specifying, synthesizing and manipulating trees.

The description of a tree is specified in TREE declarations, described below. Before describing
the syntax of a TREE declaration, we will describe some of the semantics we intend for it.

The trees we intend to address are used to shorten the longest path lengths within the collection
of processors, and to balance the workload of a computation. There are problems amenable to
a tree solution, portions of which are in some sense more important than others (for example
Optimal Binary Search Trees), but in these problems there must be a specification of relative
importance that has a size comparable to the size of a good specification of the solution.
We will therefore model solutions to problems of this sort by building separate trees and
AGGREGATEing them. Each tree described in a single locution will be balanced.

Several principles govern the design of the tree system of TRANSCONS.

I All trees are as balanced as possible. (We use binary trees; extensions to trees of higher
ar:ty introduce no new principles.) No flezibility in terms of shape is assumed, nor is any way
provided for ezpressing shapes.

• A tree specification must include a size, which can be any integer greater than one.

STle shapes of two trees of the same size are identical. That is, there is an isomorphism
t-- between two trees of the same size that maps parents, left children and right children
respectively into parents, left children and right children. There are 'compile-time' constructs
in the TRANSCONS language that allow for the specification of connections to the node that
is = to a given node, or AGGREGATION between corresponding nodes of different trees.
O-ie way to achieve this identity of shape is to have a left-biased tree that is as balanced as

...
F. " .'. - " ". ..- -. " " - ". ." '.- . - - - - . ': . - " ' " " " ' "

" " " " - " " "
• U. - . . . -" -, .. .-7 o7.- :._.--s., . .,,,,,_.,, . .aa. ... ~,a . , .,sa.

0 Thuus or PRocsssoRS 0. Tas o, Pocassons

possible. In other words, path lengths from root to leaves differ by at most one and if one

such path is longer than a second the first path must be to the left of the second.

• The nodes of a tree are divided into three groups. They are the root, the internal nodes, and
the leaves. The leaves are further distinguished by indices. References to any of these classes
of tree nodes, either to attach procedure, to specify communication such as HEARS, or to
AGGREGATE can be made. Tags are provided for a node to refer to a node of another tree
that is c to it if the two trees are the same size. This allows nodes in =-equivalence classes
to be AGGREGATED or to HEAR each other. For this to work values have to be declared
properly. Note that a leaf has to offer instances of values that are HEARd upward, and the
root has to offer values that are HEARd downward.

To support these stipulations we have the TREE data type. A tree is declared and its components
laid out using the type facility of CHI. As an example, we will describe below a situation where
tere are two trees, T and U. Each is of size n. Each internal node of T passes a value to its
children after having multiplied it by a value from the corresponding internal node of U. Each
iuternal node of U adds values from its two children. The procedures at the leaves of T and U,
respectively, are described by functions H and G, not interpreted here.

T Istype TREE (), i Eli .. n-] size n
root HAS v TALKS leftson (SENDS v)

TALKS rightson (SENDS v)
HEARS source (USES outside-value)
HEARS U.root (USES u-value)

Inter HAS v TALKS leftson (SENDS v)
TALKS rightson (SENDS v)
HEARS parent (USES v.parent)
HEARS U.inter (USES u-value)

leaf HAS li HEARS parent (USES v.parent)
U Istype TREE (i),iE[i ... n-1] SIZE n

root HAS u TALKS T.root (SENDS u)
HEARS leftaon(USES v.left)
HEARS rightson(USES v.rght)

Inter HAS u TALKS T.inter (SENDS u as u-value)
HAS v TALKS parent (SENDS v)

HEARS leftson(USES v.left)
HEARS rightson(USES v.right)

leaf HAS v TALKS parent (SENDS v)
HEARS somej (USES A,)

(In T.root) @
v 4- outside-value X u-value

(in T.inter)
v - v X u-value %

(in T.leaf,)
i, -- H(v)

(in U.root)
v €- v.left + v.right

(fa U.inter)
v 4- v.left + v.right
U 4-- V

(in U.Leaf,)

L~ ~ ~ W- . _

* - . . .,, .. ,, .. .- .-. .- ,-. --: , -.- .. - - - . . -. 'F .. - . , . -- ' ' . " . . " .i -. -. - -. .
> .'--.. -.- .. ,-.'.. .. ,.- , < - ,;. " .., " - . , . _A. ms ~ ;,S,: ~ w,'- , , ..-- .-w,.- .-..

0. Ti-uss or PRoc2ssorca 0. Tasas OF PROCISSORS,

*~ v- G(A,)

Not(the SEINDS u as u-value locution. This causes a value to be known as u in the the
intermediate node but to be known as u-value in the recipient.

In the next Chapter we show the power and limitations of divide k conquer and describe a
technique for mitigating the limitations. In the Chapter following that we give examples of the

* use of this technique.

.--.

Chapter I

Closure-Assisted Divide & Conquer

or, LAMBDA: The Ultimate Transceiver*

1I.I Motivation

Suppose information must flow from processor B to processor A, but there is a conceptual
advantage to viewing the problem as if information were flowing the other way. We have
two motivating situations where this is the case. One is the handshake problem, where an
intermediate processor in a chain of pipelining processors must be able to declare its readiness
to handle another datum after it has proccessed a first. The second is problems requiring tree-
s-ructured collections of interconnected processors. We would like to use divide & conquer to
sYnthesize these trees, but that technique is difficult to apply if data conceptually flow both up
and down the tree. It becomes easier if the flow is conceptually one way. We claim that divide A

A- conquer is a powerful synthesis technique that can produce a large class of tree structured
a:chitectures if problems can be rephrased in terms of one-way data flow.

We want to bring about a structure in which information flowing in one direction tells the
receiving processor what to do with other information computed in the receiving processor. We
want a new type of datum, the 'self-addressed stamped envelope'. Processor A sends processor
B an instance of this type of datum, and B can later use it to cause the data to be sent back
to A and to be used properly.

We use closure. to do this. We explore the weaknesses of divide & conquer without closures
balow, and then we explore some of the implications of closures.

11.2 Divide & Conquer Paradigm and Tree Synthesis

Divide-and-conquer (D&C) is a widely used technique for the synthesis of single-processor pro-
g-ams, and one feels that it should be a good technique for the synthesis of tree-shaped parallel
sructures. Trouble often arises, however, when we try to use D&C for this purpose.

With apologies to Guy Steele l[tele-??]

.. ". .

1. LANMBDA: Tin ULTIMATE 1OT 1.2. Diving & CONQUa-"

Consider what the D&C technique actually is. 'To solve a 'large' problem instance, break it into
pieces, solve the problem for each of the pieces, and combine the solutions'. This is a technique
for generating 0(n) and 0(n log n) time, single processor solutions to a wide variety of problems.
See, for example, [Smlth-831 and [Knuth-voll).

Intuition would lead us to believe that D&C is useful for synthesizing tree-structured parallel
strurtures, because the structure of a solution closely matches the structure of the set of
processors. Three sorts of problems arise, however:

D rootlock: When we try to combine two subproblems' solutions, the amount of information
traveling either from one subproblem to the other or from the subproblems to the combination
operator, or the amount of work necessary to combine, may be asymptotically large in the
problem size. A naively synthesized parallel structure would have to perform all of this work
in one processor, namely a 'root' processor that has responsibility for combining two half-
so:utions into a solution to the whole problem.

I sequentlality: In a variant of D&C, one solves one of the subproblems first, and uses some
function of the solution as a parameter to the process that takes place on the second side.
It is clear that in this case no problem element can enter the computation until all previous
elements have been used. There is no concurrency.

I bidfrectionallty: Information might have to flow both up and down the tree to make a solution.
This situation can make formal description of a combination operator for D&C hard. It might
appear that this condition is intrinsic to divide & conquer, but that is not the case. The data
could already be distributed among an array of processors (or available to be so distributed)
and the division step can manipulate indices only.

It is possible to have bidirectionality without sequentiality, but not vice versa. Rootlock is
independent of the other two situations.

These three properties of D&C solutions to specifications are impediments to easy synthesis of
tree-structured parallel structures for these specifications.

A specification, three of whose natural D&C solutions have one of these features each, is Prefix
Summation. In this specification we have a vector A of dimension n, and we want to create a
vector A! such that V1 < i < na- -,-- £ I <, ,aj. In what follows I will use the words "left'
and 'right" as if the array were arranged-in a row with a, leftmost and a, rightmost.

One solution is "to perform prefix summation on a non-trivial vector, divide it into two halves,
perform prefix summation on each half, and add the rightmost element of the left result to each
element of the right result'. This solution has two-way data flow.

A second solution is to first define "augmented prefix summation with augend z" as
1i < i < n[a'=z + x 1 ail. We then say that to perform augmented prefix summation

witb augend z on a non-trivial vector a,:,, divide it into two halves a,,# and a,,e#l.,,, perform
augmented prefix summation with z on the left half, and perform augmented prefix summation
with z + aI, on the right half. This is intrinsically sequential.

A third solution is similar to the first, except that the result vector is carried up the tree as the
valu.-3 of the D&C step rather than having as the goal to develop the new values at the leaves.
This has rootlock, i.e., it is intrinsically an 0(n) solution, as it requires funnelling the entire
result vector through the root.

Our solution to this problem is to use an upward (toward the root) flow of closures to represent
the downward flow of data.

.. -. .. - .- - . - -. -

7 - . L 47~ - - - . - .

1 LAMBDA: THu ULTIMATE lOT 1.2. Divw:z & CoNQUan

The solution is based on the idea of passing a form of data called a closures up the tree. A closure
is a procedure or function definition together with an environment, i.e., a set of name/value pairs.
When a closure is invoked, the procedure or function is invoked in the included environment as
a-agmented by parameter binding. When processor A passes processor B a closure, A is said to
be the closure's host and B the recipient.
The actual closure is not sent. Instead, a token is sent that the recipient can use to invoke
the closure's program by sending back (to the host) the token together with values for the
a-guments. By convention this causes the host to invoke the procedure, using stored bindings
and possibly some new ones from the sent arguments as an environment. The motivation for
this is that while conceptually data (i.e., the closures) are flowing in only one direction, in fact
aata are flowing in the other direction as well (in the form of arguments and invocation requests).
In this manner we can reformulate the problem from one of creating some new array that is
a function of an existing array to that of creating a closure that, when invoked, will perform
a given action on the leaves of a tree. This action is the creation of an element of the new
a-ray in each leaf. The original specification is transformed into a specification that declares
the existence of a closure that, when invoked, will satisfy the original specification, followed
by a specification that the new closure be invoked. The three barriers to simple tree solutions
described above do not arise. We consider a synthesis of parallel prefix summation in t]e next
Chapter.
We have exchanged the difficulty of reasoning about two-way data flow with the need to reason
about closures. We feel that this is a good bargain because reasoning about closures only requires
Vie addition of new axioms to a theorem prover's data base, while two-way data flow requires
changes in the way we look at DkC. Below we show that this change of view costs little speed,
and in the next Chapter we show that no expressive power is lost.
We conjecture that this technique can bring most O(log n) and O(log2 n) tree parallel structures
within the reach of a D&C-based synthesis method. We support this conjecture by several
synthesees in the next Chapter. Since a tree-structured processor is inexpensive to manufacture
compared to more highly interconnected machines and seems to be reasonably powerful, we feel
that automatic tools that make use of this power easier would be an important contribution to
the technology of synthesis of parallel structures.

We first prove that the computation of the closure in the root node is fast:

Theorem 1.1. Suppose a problem fits a divide and conquer scheme without sequentiality or
bidirectionality. That is, that the computation of the result in question for the substring of the
problem ranging from I to u is

If 1 =u thenV',' otherwise G(Vr', V:,+i)

and T(G) (the time to compute G) is < O(F(u-I 1- 1)), wher, r' is a nondecreasing function.
Then T(V?)=O(F(n) log n).

Proof: Note that the form of the definition of V1' precludes sequentiality and bidirectionality.
We are using value semantics for the call to 6.

T(V')=T(V', so T(V I) is bounded. Say T(G) : coF(u-l+ 1). We offer an inductive proof that
T(V') coF(u-I + 1) lg(u-I + 1) + T(V'), where co is the constant of T(Vn)=O(F(n) log n).
The base case is immediate.

7 -

1. LAMBDA: THu ULTIMAT3 1OT 1.3. DUSCRIPTlON OF CLosuas•

If 74u then

T(V')- max(T(V1+')/2j), T(Vl+%+l)/21)) + T(G) (definition, nonsequentiality)

< coF((u-I + 1)/2)lg((u-I + 1),2) + T(V') + T(G) (by induction)

< coF(u-l + 1) lg(u-lI + 1) + T(V') (monotonic F)

This is O(F(u-l+ 1)log(u--+ 1)), which is O(F(a)log n) at T(VI•). I

This theorem only holds if sequentiality and bidirectionality are not present. Sequentiality can
not be present because T(Vr*)- max(T(V(''1)/3J), T(Vr(,.,. 1)/21)) + T(G) only holds if the
computation of the V's can proceed in parallel, and bidirectionality must not be present as there
is nothing in the statement of the theorem to allow for this. It holds even if rootlock is present,
but 'n such a case the theorem produces a weak result, since F(n) would be large.

We then prove that the application of the closure that is computed in the root is also fast:

Theorem 1.2. Suppose a closure is computed in the root of a balanced binary tree. That
closure can contain closures whose hosts are its children. Those closures, in turn, can co a-
tain closures whose hosts are their children, etc. Suppose all closures computed within the

tree are of the form C,=Ax '':'+" [G(VJ', Wl] where V' includes C', and values
that are available in conjtznt time, W1 includes locally available values, and G is of the
form G(V,V,)=(C(Gj(Vj,V)) II C,(Gj(Vj,V, II Go(Vj,V,W')))) (here C, is the closure con-
tained in V, and Go can affect W?.) If max(T(G.),T(G),T(G,))=O(F(L-u + 1)), then
T(C)=O(F(n) log n)

Procr: virtually identical to previous proof. 3

In summary, the technique of computing closures from component closures is a technique which,
together with divide-and-conquer, provides the ability to synthesise a wide variety of tree
struc tures with few of the technical problems that other synthesis methods might encounter
concerning reasoning about path lengths or the cardinality of sets of nodes. It allows us to do
this and to still produce the O(log n) (or O(log' n) for small i) parallel structures we expect from
tree,.

J1.3 Description of Closures

A closure consists of a procedure, and bindings for some of the procedure's free variables. The
procedure, in turn, consists of a piece of program and a binding list. The concept was first
described in Church's X-calculus [Church-511. Closures are valued for their expressive power
even on single-processor algorithms. They are elements primarily of dialects of LISP. See, for
example, [Steele-TT], [Moon-82J, [Interlisp-831. A similar concept, actors, is also found in other
langi-ages (See, for example, PLASMA in [SmlHew.75].) Actors are also described, as here, as
a mcthod of expressing interprocessor communications concepts. I here explore a case in which
it m ikes the task of writing programs an easier one for computers.

It is common to use the notation Xz, 2 , z,[F(z1 , 22,.... Z,, y2r , 1 ,... ,yM)] to denote
abstraction of a function of n parameters from a function of n + m parameters. The y,'s are

-8.

I LAMDA. THs ULTIMATE IOT 1.4. TRANSMITTSNG A CLOSURE

h ee variables, meaning that their values are determined by some of the context in which the
fNction is evaluated.

We will use 'X.9 ,o[F(zs.. , yl, ... , zi, ..)]* to denote a piece of program text that makes a
closure that can be applied to as many parameters as there are z's. In other contexts we will
u3e that to name the closure itself. When it is applied the z-values from the application, the
y-values available at closure creation time and the z-values at application time will be used. The
y's are called the closed uariablev. We will use XY,.'1.' [F(zl, ... ,Yi, . .. , ,z1 .. .)j created by
the above fragment to denote the closure in which y=vl, .

11.4 Transmitting a Closure

* "Io transmit a closure from one processor to another, it is not necessary to transmit the entire
p~ogram and all of the environment values, provided that the processor sending the closure
s-ands willing and able to perform the work, and that the side effects are within reach of the
s',nding processor. In the cases we explore there are side effects that are only within reach of the
slnding processor. Since the motivation for closures in the first place was the desire for a datum
t'iat, when exercised, would cause certain desirable behavior in the host, this will normally be
t ie case.

All that is necessary is that the transmitting processor send a token of some sort. The receiving
processor can save the token and later use the closure by sending back the arguments, the token,
aid control information.

When this is done, the processor sending the closure (and willing to do the work) is called the
c osure's host, and the receiving processor (which has a license to use the closure) is called the
r'?cipient.

We say that a closure is live if there is a possibility that it will be invoked at a given time.
A. closure becomes live when it is sent and remains live until the recipiit reaches a point in
its procedure past which it can not invoke the closure. We will have more to say about issues
c-ncerning the liveness cf closures during the remainder of this Section.

Closures can be efficiently implemented in a reasonable machine model. Internally, a closure can
be implemented as a block of memory locations containing a *pointer" to the program fragment
a-ad a list of all closed variables and the corresponding values. A pointer to the block could be
used as the token. When a closure is applied the recipient can send the host a copy of the token,
t..gether with whatever other information is needed (primarily the argument(s)). The host can
use the received token and can invoke the proper code with the proper environment and with
the arguments bound to the parameters by using the information contained in the closure and
nessage. A piece of program text (in the host processor) that creates a closure will be called
a closure generating form or CGF, and a piece of text (in the receiving processor) that invokes
one will be called a closure invoking form or CIF. The class of closures generated by one CGF
is a family. An instance of the family of closures generated by a specific CGF named C will be
called a C instance or an instance from C. Members of a family differ only in the environments,
s;nce the code will be the same.

* '1 he required data transmission can be reduced in cases where it is possible to infer various
tiings about the use of a closure. For example, if it is known that only one instance from a
g ven CGF is live at a time, the host needs not send the token, but only the name of the CGF.
I hat name would not vary and can be "assembled into" the CIF. This can be true even if there
can be several CGF instances for a given CGF, provided that the host knows what order the

. " . . . "... . . " "" " " "" -, .- S " "' "" " "

i. L;-.MDA. Tx ULTIMATe IOT 1.4. TR AMsuiTmaN A CLOSURa S.

reci.ient will use the closures it receives. If there is only one CGF in a processor, and only one 1
instance of the closures that it generates can be live at one time, the token can vanish; the fat.
that the "receiving* processor wants to apply any closure is information enough! The closure
has .ieen completely swallowed up; information only travels from the recipient to the host, even
though the synthesis was performed as if data fowed only in the other direction.

* A futher simplification, of interest for the problem of synthesizing parallel structures that will
latei be redted to VLSI, is available. Suppose the following conditions are met: Applying a
closi.re does not include changing state in the hcst processor. (In this case, for the application
to be useful it must cause other applications in the host.) Assume also that there is only one
live .:losure in a given family at any time. Assume further that the values used in that closure
to c.ll other closures hosted elsewhere can be computed, using only values available to the host,
by means of combinatorial logic (the code fragment is loop-free and consists only of operators
chosen from a library of integrsteable operators).

In this case it is possible to perform the closure using only 'combinatorial logic' in the host
processor. Specifically, no register need be provided to hold the closure's parameter in the host
proc,ssor. Instead, logic must be provided to map a signal representing an application of the

o clostire to signal(s) representing application(s) of the subsequently called closure(s). Registers
are provided to hold all of the values of the closure. An example takes from the Parallel Prefix
structure (whose derivation sketch is in the next Chapter) will make this clear.

We have the code fragment to synthesize a closure, namely),.C.h[C(z) 11 C,(1 + z)]1. Here
it cen be established that there is only one outstanding instance of the closure at any time,
that the closure does nothing more than apply other closures to a function of its argument, aL-d
that the computation performed on the argument is "easy'. We can therefore use the circuit of
Figure 1:

'For clarity, the exposition assumes that the prefix operation is addition, and that we consider addition
to be intepateable.

-10-

4|

WI]q
i LAMBDA: THR ULTIMATn lOT I.S. FORIMAL ARGUIlINTS fOR lTHR ADMISSIBILITY Or CLOSURS"

Sz

+

Figure 1. Simplified Parallel Prefix Internal Node

§..5 Formal Arguments for the Admissibility of Closures

In this Section we formaise the notions we use to argue that restricting communication to the
upward direction in trees is a harmless restriction, not preventing the synthesis of tree parallel
s'.ructures to meet any specification that could have been met absent this restriction, provided
only that we also allow upward communicatiot closures and that we not consider the application
or a closure that was communicated upward to be a downward communication.

First we need a formal definition of a tree parallel structure:

Defiltion 1.3. A tree parallel structure (tree structure) is a collection of processors together

with programs that meet all of the following conditions:

w Tere are three types of node: leaves, interior nodes (which need not be present), and the root.

o (tree) There are various two-way connections ("wires') between nodes as follows: roots have a
left and right wire; interior nodes have a left, right, and parent wire, and leaf nodes hVe a
parent wire. A parent wire must be connected to either a left or a right wire, and vice versa.
Node A (reap. B) is an ancestor (reap. descendant) of the other if there is a path from it to
the other using only left or right -- parent (reap. parent -. left or right) wires. If the first
wire on the path to a descendant is a left (reap. right) wire the descendant s. a left (reap. right)
descendant.

-11-

. . : ..
l .: ,.. .. . - ... ,. . ..- -. . . - . ,. -. .. - . : : , . ,,, - ,_',' -'- -. '" '- :'' '

1. LANGDA: THU ULTIMATE! 1OT 1.5. FORMAL ARGUMENTB FOR THE ADMI*SINLITY 0F CLOSUREDI

, .1€

(numbered leaves) TAe leaves are indexed by a tataily ordered index sct ('numbered") so that 6
the index of one leaf must be Its than the index of a second leaf if there is a common ancestor
for thich the first leafi i a left descendant and the second a right descendant.

(homogeneous) All nodes of one type run the same program. Programs are allowed to do
reasonable forms of computation and to try to send and receive information on the wires.

(sngly buffered) If a program tries to receive information over a given wire it will do nothing
else until the program of the node at the other end of the wire tries to send. If a program tries
to send on a wire twice without the other program having tried to receive, the sending program
will do nothing else until the other program tries to receive. Programs may perform closure
application with no regard to these restrictions, but the transmission of the closures must have
obeyed these conditions. Programs may test whether a line has or can accept data and therefore
avoid waiting if it can't. The situation where neither program at either end of the wire can send
or receive is possible, but only for a bounded amount of time.

We need a definition of a tree parallel structure with upward communication only:

Definition 1.4. An upward tree parallel structure is a tree parallel structure in which no com.
munication is specified from any left or right end of a wire to the corresponding parent end.
Closure application does not count as a communication.

This is a formal definition of the objects described by TREES statements, and in the rest of
this Subsection we will explore some of the implications of this definition. In particular we are
interested in an assertion that limiting communication to an upwards direction but allowing
cloILres gives the same expressive power as allowing communication in both directions but not
usings closures,

First we need a lemma.

Lemma 1.5. Suppose we have two processors A and B with two wires abl and ab2 from A to B.
The.e wires obey the 'tingly buffered' coneition above. It is possible to simulate those two wires
with a single wire with no more than a constant factor speed loss.

Procf: Replace the wire. Replace occurrences of vead(abl, z) (reasp. a2) in B with the fragment
while undefined(uabil) do cheekO; od; z - vail; vabl .- undefined. Replace readable(abl) with
defiued(vabl). In A, replace send(abl, x) with while delned(vabl) do checko;od; vabl - z; and
sendable(vabl) with undefined(vabl).

Insert 'check()* sufficiently often to guarantee execution periodically, with a period short com-
pared to the time it takes to communicate between processors. The checkO call in A checks
wheiher vabi and vah2 are defined. If either is defined, say vabl, checko sends the pair ((1, vail))
over the wire and does vabl -- undefined. The check call in B is a fnite state machine. In its
initi il state it checks whether there is anything to read on the wire; if there is, it reads it. This
should be a number i; the FSM enters a state Si. If checkO is in St, then it will check whether
vabi is empty and only if so it will read the next object from the wire and enter the initial state.

Enu: aeration of the sequences of actions on he two wires, actual and simulated, serve to establish
corrctness. That there is only a constant-factor slowdown can be derived from the fact that
chee k0 does a constant amount of work unless it waits, that it only waits if (and as long as) the
simulated machine would have waited, and that it replaces each communication with a constant *

number (two) of communications. *
Now we can prove a fundamental theorem about un.directiozal communication in a tree.

-q

" .'_ '""., .'... ... , . _ . , . , ., . ' *,.• ':.., ,:. " . . , , , ._..,.---,.-,-. ,...,. -

I LAMBDA: THI ULTIMATE IOT 1.5. FORMAL ARGUMSNTS FR Tma ADmI5SIDILITY O CLOSURBS

l heorem 1.8. Suppose we have a tree parallel structure 7 without transmission of closures.
V'hen it is possible to perform the same computatson that 7 performs on an upward tree parallel
acructurc.

Proof: Simulate a second wire from each child to its parent per the previous theorem. Call
toiat wire C (C,) where it impinges on the parent and Cp where it impinges on the child.

'he nodes' programs must be modified as follows: All parts of the program must remain
unchanged except for downward communications, which consist of sending statements of the
firm (1) write(left, z) and (2) sendable(left) (or right, of course), and receiving statements of
the form (3) read(parent, z) and (4) readable(parent). These four forms are directly translated %
as follows: (1)=read(CI, C); C(z), (2-r=eadable(C), (3)=whUe undefined(v)do checkO; ad-, z"

v v - undefined; send(C, X,[v .- zj) and defined(v). check() is from the previous theorem.

P Additionally prepend 'send(Cp,), v - zl)* to former recipients' programs and append
"ead(Cl, C); C(z) to former senders'.

That this causes correct information to be seen in the recipient is evident from the observation
that each closure is used to send exactly one value to the recipient, exactly that value is used
as an argument to the closure as was previously being sent, and it is only used once (and
immediately rendered undefined). That this causes the programs to 'hang" at exactly the right
t mes can be easily seen from the fact that there is a closure in (say) C1 exactly when the recipient
would have been receptive, and there is a value in v exactly when there would have been a value
aTailable. 3

1 he key point to note is that all downward communication is expressed as closure application.
This suggests that it will be possible to express a problem that apparently can not be solved
by divide & conquer as the corresponding problem of creating, in the root, a closure that has a
desired result when appl ed.

We have therefore shown that we do not surrender any expressive power when we limit tree
declarations to upward communication.

•.

Examples of the Use of Closures

12.1 The Handshake Problem

Suppose we have a pipeline of information. Data are supplied at one end of a chain of prores-
sors, processed by every intermediate processor (perhaps in combination with data flowing the
othe- way), and the results are either extracted at the other end or developed in some of the
intermediate processors. An example of a problem that can be easily solved with a parallel
structure of this sort is convolution, where the specification VA, B 3 AI'Vidi{= Ej+i-- ajbj]]
mus! be met. This can be accomplished by a row of processors, each responsible for computing
one Alement of a', and a regimen in which the A-values low one way, a, first, and the B-values
flow the other way, b. first.

To perform the synchronization using closures, we would have to state that the I/O processors
at exch end provide a closure that can be used to obtain the next datum.

There are two possible ways that use of a closure can result in data coming to be available to the
poin,, of use. Either the value can be returned as the result of the application, or the application
can ,:ause the datum to be sent separately by the closure's host.

We prefer the latter. We like closures not to return values, as we would have to invent a syntax
to allow other computations to proceed while awaiting an answer. Expressive power is not lost
in fcrbidding closures to return a value, because one can instead have the value returned as a
sepa-ate communication. Our prime purpose in setting up parallel structures is to allow different
proc..ssors to do different but related work simultaneously, and this would be compromised by
this restriction. I will assume this convention in what follows. It is clear that the difference is
one 3f convenience and not a fundamenta one. It does, however, allow for such features as a
natural method for having a value be the result of the application of more than one closure.

Frequently a link will be used for more than one value. If it is convenient to use a closure to get
succ :eding values, there wili be many applications of closures. There are two ways to manage
this: either a single closure can be invoked several times, or use of a closure can cause a new
clost re as well as the next value to be sent.

The obvious apparent disadvantage of the 'atter, that it would seem to require the transmission
of extra, useless data, is not real. When the use of a closure causes it to become dead but causes

IPA

9 .q"? "

2 EXAMPLES OF THE UsE OF CLOSURES 2.2. DiVioDl-AND-CONQUER WITH CLOSURES

another one to be sent, we have the situation where only one instance of a given class of closure
can be live at one time. In this situation the closure need not be sent

P a closure is invoked repeatedly, this causes a problem in determining when a closure is dead.
I his problem is not unique to this circumstance, however; there can arise a case in which it is
nft known whether a clcsure will be used even once.

12.2 Divide-and-Conquer with Closures

Ins this Section we will consider the broadcast problem, the prefix summation problem, and a
part of one solution to the connected components problem that is amenable to tree solution.

112.2.1 Broadcast

In the broadcast problem, a value or values known in a central location are distributed to many
locations. The broadcast problem can be described formally as Vii'd - F(aj, x)] or perhaps
Vj'Vi[a - F(ai, z,)]]. One method of synthesizing solutions to this problem might be to
recognize it as a distinct pattern and carry a synthesis rule that produces a broadcast tree when
sulpplied an instance of a broadcast problem. Anoth-r solution is to produce a chain of processors
as a bucket brigade to distribute the information, and then to successively split the chain in
half, but this has the problem that the synthesis process is iterated a variable number of times.
With the new mechanism of closure passing, it is possible to provide more general rules that
handle broadcast problems as a special case without multiple reformulations.

Consider the application of divide & conquer. We want to produce a cloture that, whti applied
to zj, performs V - F(ai,, z)]. We hypothesise that to solve the problem we for a whole
subarray we can solve the problem for each of two pieces of the subarray and combine the two
solutions in some manner. Giving the names fI and fr to the closures for the left and right
halves of the problem and 1w to that for solving the whole problem, we then show that to
combine closures LX.[VjEr[o'. -F(ay, z)1 and fr=--),.VEra[a.-F(aj,z)j1 we have only
to create = '[/f 1t(y) 11 f r(y)]. We go through the following sequence:

VA, s 3 A'[Vi E[l....nla =F(a,, z)]]

3 3C(x)[aetlo(C(x))= VA, [Vi E(l... s][a=F(a;, z)]]J (abstraction)

hypothesis: 3 Cj' jetloa(Cj'(z))= V A, s Vi El... ujja'=F(a, z)] (division)

A Cis(s) M G(Cr(Gi(z)),c:,+,(G,(z)))j]

The abstraction step is the step of asserting that there is a function whose application brings
aoout the FOL expression that is being abstracted. The division step is the step of asserting that
it. is possible to build a closure that solves a large problem, given closures that solve subproblems
(.,nd possibly other data).

This can be satisfied by setting G(C1 (z), C2 (y)) = C1 (z) 1I C2 ky) (concurrent composition) and
Gj(z)=G,(z)=z.

It only remains to describe the procedure for handling a singleton array. This is the closure
XX'[a', .-f (a , z)].

9 I

- N.*J

2. E,1AVAPLISS OF THI U$s OP CLOSURIS 2.2. DIVIDV-AN1.CONQUUBR WITH CLOSURS$

The computation of the top level closure is O(log n) where n is the size of the problem. This
is cliar from the reasoning of Section 1.2and from the observation that time(G)=O(1). (G
is creation of a closure enclosing two given closures.) Similarly, the time consumed by an
applecation of the top closure will be O(log n) from the fact that max(time(Gi), time(G,))=O(1).
(GI and G, are identity operations.)

112.2.2 Parallel Prefix

2.2.2.1 Overview

To use the closure technique on a given specification, reformulate the problem from something
like V X.... 3T[?(X,T) to 3C[VX,...actioaC0=P(X,Y). Heuristically, the problem is
reformulated from that of satisfying a specific input/output specification to that of producing a
clos,.re that, when applied, will cause the 1/0 specification i to be satisfied.

We will need to define 'augmented prefix sum,,ation with augend s' as V1 < i < --'= +
- aJ. We then say that the task is to deliver to the root of the tree a closure that will

perform augmented prefix summation. To create a closure that will perform augmented prefix
summation with augend z on a non-trivial vector, divide it into two halves, get such a closure
from each half together with the grand total of the input values for that half, invoke the left
half'3 closure with x as an augend and the right half's with x + the left half's sum. We deliver
to e:ch node of the tree closures that will perform augmented prefix summation on the vector
comprising its leaves, together with the leaves' sum. Note that the closure delivered to each
node's parent has to include the left subtree's sum, which is available now but won't be later.
A more formal description follows.

Asstme that a vector Art..., is divided into A1 . and Ai,..•... Further assume that we are
tryiLg to compute F(A 1) which we will denote F,*. Further assume that we want to have
sonic effects, local to the array elements. We would therefore want to compute a closure, CO,
that would have the desired effect.

The generic combination operator for the values is F -G(Fr",F,+,, u,u') and it is
a synthesis task to derive the properties of G. Similarly, Cr=G(Cj%',C.,+,,1,u,')..
If the closure has an argument the situation is slightly more complex; we have

u, uu), C,,+I(z, F, F,+ 1 , 1, I, U'), 1, u, u) where the F vec-
tors are the values available to (and incorporated in) C1. This general schema need only be
used with specific combiners (i.e., G, G1, etc.). As a simple example, prefix summation can be
performed by this schema if G - (C . 1 C,,it) (where is concurrent application), Gl(z)=z,
and G,(z)=z + ug. v, in turn,is computed as vj + v,. Singleton v- and C-expressions are
C- Xz[a'.- a, + z] and v,=ai.

2.2..*.2 Derivation

In this problem, the specification to meet is ViEE.o. n! ,- I'El,..,[ajl(. I will introduce

the :;bbreviation Zu M e[j...,A a,. This then becomes ViE[l... ,i[a' - We change the

IMoie precisely, the problem of satisfying the I/0 specification that requires no input and produces
tha. closure

-16-

- .
~. ~- .]

2 EXAMPLIS OF THE Us OF CLOSURES 2.2. DWVIDR-AND.CONQUNR WITH CLOSURS

specification to one requiring the computation of a closure which, when applied to no arguments,

performs this action; together with the application of that closure.

VA 3 Vi Ell... nla----[aj]]-

= 3 CVA[aetlon(C0)=[ViE[I... nllai= aI. l (abstraction):fe611....]

hypothesis: 3 C'VA[aetlon(Cj'O)=Vi EI.. u]ja = , ail (division)
jE[1.--.il

A C' G(Cu'(,C",+)]

But actlon(Cl,+ 1 0)=ViE~u'+ l...u][a,=,r,,+1] so this is impossible. CO.,+, must be
p-rovided with a parameter to be able to do this.

We modify the closures so instead of action(C'O) ... we have

a.!tlo(Cr(z))= Vi E(I... uI[a -=H(L,, z, ill. We do not yet know the properties of H.

We now have:

actlon(Cj'(z))= Vi E[I... Is)[a =H(" , z, i)]

action(C" (z))= Vi Ell... ..laH(j, z,i).

,etlon(C:,+,(z))= Vi E[+ 1... u][a =H(z, i)]"

So we observe

actlon(Cr(z))

-(Vi E [I... u1 [a'=H(-,. 0)1) (above)

M action(G(C'" (G (z11, C, ,,+, (G, (z)))) (D&C)

= G((Vi E[I... u.][a=H(i, GI(z), ,)]), (V i E[u 4- 1... uJ[4=H(, G,(z), i)]))(z) (expansion)

I I=i fL e[I.. .u'i [a'----H(- ,s,,)I A V i E[u + 1... .u][a---H(" ,z,,i)l (V identity) I

Assuming G merely generates a closure to produce application of both of its parameters, then
z, i)=H(F;, G(z), i) and H(El, z, i)=H(1:'.,, G,(), i). The first unifies to z=G (z).

* - 17 -

I.:

" - . .."- - " -- - -,-'*..T--,: . .". - -- . • - -" " - i "..

2. ExAMLIS OF THS Usa or CLOSURIS 2.2. DVID1-AND-CoNQUBR WITH CiOSURMS

The second needs a bit more attention. If we represent as £ + , we learn that

z, i)=H(5 + Z,,, z, i)=H(Z',+,, G,(z), i), so H(q + r, z, i)=H(q, G,(z), i) where
I- '

Lett-ng H=X,[z + y] we get G,=X8 [z + r]. This leads to another problem, that there isn't
eno:gh information around to compute G,. We have to expand the problem again to bring
about the availability of intermediate values for the intermediate closures. In this case we need

'. Instead of

actlon(C'(z)) actlon(G(C"'(Gz ()), C', + l(,(z))))

we want

vr=H(vj', vu,+,)

and

action(C*'(z)) &eation(Gl((ja , 0,+,, z)), C-,-(,v", '*+1))

Taking a more intuitive view for the moment, we observe that we want to compute a two-tuple
((vj', C1')) in which v'= ' and in which actlon(Cr(z)) is the computation of an augmented
prefiz .ummation, where a - z + E' instead of a4 .

We want G,(v v', z)=z + s', so we must use , = E, or vt= E.-
We lack only one step to a complete solution. Initially we wanted to compute a closure which,
when computed for that "sub-array* which is the whole array and applied to no argument,
computes the prefix sum. We will get, instead, a pair of results. One of the results is a value,
and the other is a closure which, when applied to one value, computes a generalization of the
prefix sum. It remains to ccnvert this back into a closure that can be applied to no arguments.

We have

&ctlon(Cj'(z))= Vi E [L... t[a = +z]"

and we want

action(F'() Vi E([1 .. n[a = 11 -ctlon(C'(Z))= V iE[... n][a'i-- +z.:

for some z. Clearly z=O wcrks.

Summarizing, we have all of the following:

-18-

".. -.- '". -" . 5 . " 5 - .,'" "

U~-.
WT WIN.- 7N - 3. - N - -7r

2 EXAMPL3S or ?H2 USB OF CLOSURaS 2.2. DIVIDN-AND-CONQUXR WIH CLOSURZS

actlon(C(;)= V I < -[atG= 1
I

,etlon(C'(!)= V I < i <u'=

V I < i <u'[a= l AV u.+ 1:i< u<_la'=ElI i

- <L < i<'('= 1

A Vu'+ 1 _ i < u[(a"=]

A Vu'+ 1 _i < u a - +al

We must supply a new parameter:

'I

action(C(zo))= V 1 < i < njd=i H(, z0)]

actonCu~))=actlon(CII (GI(z)), C ,(G,(z)))

(,zi)=H(' , " -- which works it H(z,y)=z + V and

C,(z)= X' +z, but the latter requires having E +z available. We therefore further modify
t.e problem by requiring the collection of another value.

I'

=H(2, D)
1 u'+1

The last observations we need (the base case) are;

i

,, ~~~c!=X.(V < j: < a,,.=z + =.,,= + ail

We therefore have H(z, V)=z + y making vu=v' + v,,f. Cl(z) applies Cu' to z, and C.,,+1
to) z -- u" . Creating new symbols for the values (vi, v, and v) and closures (CI, C,, and C)

received from the subproblems and passed to the superproblem, we finally get the followirg:

- --

. ". . . ;"-/ .; . .' . .-- .m-,',, - 'm b , , ,
-s - ' "

"

11 .-7 .--.

2. E iAmPL3S Or THZ USX Or CLOSURES 2.2. DrviDU-AND-CONQUUR wITH CLoSURSI

H(z, y) =z + y
U=VJ + V,

v.leafi=.
G(CI,C,) =C(GJ(z))II C,(G,(z))

Gd~z) =z
G,(z) -z + V,

C.leafi=Xg[a=Z + a]
C.root= 0oC--. MCI, C,)(O)]

This can be converte-d to a decorated tree structure by sim. Ae rewrite rules.

For example, we have G(C 1, C,) - C,(GI(z)) 11 C,(G,(z)). We would therefore have a synthesized
TRYEE declaration to read, :n part,

lntcr HAS C, v
HEARS leftson (USES C as C1, USES v as vi)
HEARS rightion (USES C as C,, USES t as u,)
TALKS parent (SENDS C, SENDS u)

and -he program for the internal nodes to read, in part,

(in '.inter):
C .- X,".c,.c.'[C1(G,(z)II C,(G,(z,)]

where GlCz)=z
where G,(z)=z + , u,

U - v -4- v,

1§2..3 Connected Components

The problem is to find the connected components of a graph, given an adjacency matrix (a
mat) ix A in which aq=true iff node i is (directly) connected to node i in the graph. The
adjacency matrix will be available for input one row at a time, and a solution is better that
readi the rows at constant intervals.

In this Subsection we will derive a tree structure that solves part of the problem and meets
cert,.in worst case time constraints. The derived structure will operate while the rows of the
adja-ency matrix are read in.

Forrally, we will assume that there exists a source of rows of the adjacency matrix that can
prov.de one row at 3 time. Each column will be read by its own processor. Columns and rows
have integers in the range [1,2,...,n] as names. When column i's processor reads row j it
receves the value true if there is a graph edge between i and j or false otherwise. The network
we cerise will then store the information in such a manner that it or some other network can

(to -

2 EXAMPLES Of THl US& OF CLOSURES 2.2. DIYIDI-AND-CONQUBR WITH CLOSURNS

i'entify connected components of the graph whose adjacency matrix was read. The identification
p-ocess is not the issue here.

I he column processor nodes of the network must read elements of the rows of the adjacency
n.atrix at such a time (in relation to the time other processors read their elements of the same
ro w) that the network will not confuse eiements of different rows of the matrix, and the net must
build a representation of the the (partial) connected components information in some useful
manner. The representation should be compact and the computation should be fast.

First we will derive the structure up to one important implementation decision; then we will
describe the two resulting parallel structures.

2.2.3.1 Derivation of a Tree Structure

In the connected components problem, we dc not necessarily want to change the state of the
leaves of the tree or develop a value at the 7oot. Instead, we want to change some state so
questions about connected components become easier to answer.

We will use the notation CC(i) to denote the set of nodes in the same connected component -

a, the node i. CC'(N) is a predicate indicating whether all nodes of N, a set of nodes, are in
a single connected component. Since the state of knowledge of the connected components of a
g-aph can vary with time and, in a multiprocessor system, with location, we wiil later introduce
o-her variants of the CC' predicate.

Ve will read the rows of the adjacency matrix one by one. After we have read all of the rows
i'e will then engage in another computation, not described here, to put reducemi,"{j:jE CC(i))
ii, leaf i. In what follows we will call the processing that takes place between the reading of
c-.nsecutive rows of the matrix a phae.

There are several solutions to the connected components problem which we reject because they
have certain undesirable features. One solution, for example, would be to have each node record
tie row numbers of all rows of the adjacency matrix in which it is mentioned. This would require
a lot of storage. Another solution is to have each leaf, after each row, find reduce, ,{j:j E CC(i)}
si, far. This solution has the problem that the time between the reading of rows can vary over
a wide range.

C ur derivation requires it certain amount of invention. We will assume that the user provides
t'iis by defining several intermediate predicates and by providing some information. First, the
idea of a map to store the state of the connected components so far, and than the idea that the
n-ap is limited, have to be conceived.

We start with axioms about connected components:

CC'({e})

CC'(O)

CC'(A) A CC'(B) A Al B 3 o CC'(AU B)

CC'(A) A A C A= CC'(A')

-1 -

..

2. EXAMPL O THR US OF CLOSUR23 2.2. DIVM3-AND-CONQU3R WITH CLOSURss j
We observe that the following is trivially true:

CC'(A) A CC'(B) A 3 a, b[a E A A bE B A CC'({a, b})1 CC'(AU B)

First, we supply TRANSCONS with a divide-and-conquer formulation.

* VV,WEVCC'(W)
where

CC'(MW - W<1
V

W=Wi W WV.

A CC(W)
A CC'(W,)
A (W 100 A W, 0 0 CC'({ab W, ab W,}))

TR. NSCONS can easily check that this meets the axioms, but the combination of the two
halves by a pair of arbitrary elements, one from each half, constitutes a user-supplied invention.

TR.L NSCONS observed that the current state of CC' is represented by the choices of pairs
of arbitrary elements, and introduces M to carry this information. Since M represents the
stat,: of knowledge of connected components, we will define a new binary predicate CC(M, X)
which denotes that the mapping M asserzs that there exists a connected component C such
that X C C. Taking a finite difference against the addition of a new set X that is known to be
cont ected, we get:

VX, M 3 M'[CC(M',X) A VW(CC.M,W) =+ CC(M',W)I
A Va, b[- CC(M, {a, b})

A VY,Z[CC(M,{a}UY) A CC(M,{6}UZ)

=*Ynx=o v z1lx=0]=,.,cc(M', (a, b})J]
where

CC(M,W) IWI<I
V

W=WJ WW,
A CC(MV4)
A CC(M,W,)
A (Wi 0 A W,$0

.3 a E W, 6 E W,[M(a, 6)])

The long conjunct on the second through fifth lines state simply that no connected components
are implied by M' that aren't either implied by M or forced by X.

We nvite the user to make another critical observation, namely that VW[CC(M, W)4
CC(M', W)j can be satisfied by Va, b[M(a, b) = M'(a, 6)1. (S)he can further observe from the
original axioms that CC({a,6} A aEA A CC({6, c}) A c EC = CC(AUC). We can thus
liberalize the condition on M in CC as foliows:

VX, M3M'[CC(M',X) A M(a, b) M'[a,b) A ...]
where

CC(Mw) - IW1:.1

- --. . --

.. _ :+. -" ..-? +..[+'."2-

... . ..-:~~~~~-,:+ : .

2 EXAMPLZS Or THI US Or CLOSURUS 2.2. DIVDI-AND-CONQUUR WITH CLOSURS

V ,
W=W LW

A CC(M, W)
A CC(M, W,)
A (WN0 A W, 0 0

=*-=aEWi,b(M(a,b) A (bCW, V CC(M,f{}UW,))])

I his specification is suboptimal because it allows M to be multivalued. We will examine this
s.)lution in detail and see how it translates into decorated trees that maintain M in internal
s ate. We will then see what can be done to improve this.

W1 e therefore make a change in CC to express the fact that the divisions will always be made
ii. the same manner, and that M need only be defined for one set of subsets of the universe.
1 his change is the addition of a parameter, a subset of the universe (of nodes in the graph
v hose connected components we are seeking). Later we will repair another deficiency of this
specification, that it allows M to be larger than we would like.

A f will be made a ternary rather than a binary relation. M(S, a, b) is true if a connects to b
r..lative to S. The purpose of this is to limit the size of M.

(A new parameter to CC ranges over particular subsets of the universe. It has two roles: it tells
v hat version of M to use, and it restricts acceptable solutions to CC. CC(S, M, X) is true only
if there exist elements of M(S I, z, y), where S' g S, that show that X is connected. Thi3 is a
s ronger condition than the original CC(M, W).

1o formalize the new parameter of CC we write:

V V, X, M, W E V 3 M' V a, b CC(M, W) A CC(M',X) A M(S,,e, 6) M'(S, a, b)
where

CC(MW) CC(U,M,W)
and

CC(S,M,W) = IW<l.

w,=wfnL(S)
A w,=wnR(S)
A CC(L(S), M, WI)
A CC(R(S), M, W,)
A (M40 A W, # 0

a E W, bE W(M(S, a, b):)
and

L(S) w R(S)=S

ow we can perform a synthesis by transforming satisf '(VV,X, M,WE V 3 M'Ya, b[CC(M, W) A
C C(M',X) A M(S,a,b) =* M'(S,a,b)]). This works with no problems. We soon
hiad ourselves transforming satlsfy(M'(S,a', 6)). However, this causes no problem.
Iet.
SIlppose we add an additional condition, M(S, a, b) A M(S, a, c) =* b=c. We start with this: (we

have replaced occurrences of M by occurrences of M', as the constraint propagator would do
-hen analyzing "CC(S, MI, W)'.)

* -25 .. .:...:, ..--. -. 6.,: } - .:.. ..- . -.

2. ExAMPLIS 0r THZUS liaOF CLOSURSS 2.2. Dtvws.AND.-CONQU3R WITH CLosuatZ&

A 3 A n0 A W, 340
=3 a EWt, 6E W, [M'(S, a. b) A V 'C(M'(S,a, C) =* C=611)

This last clause makes us a bit unhappy, when considered together with the expression
M(S, a,b6) =*M~, ,

Howaver, we have M(S, a.c) CC(S, {a,c4) and CC(R(S), {C)U W,) A CC(S, {a, 4)
CC(S, {a) U VW,).

We therefore use V to expose the fact that there are alternatives:

A 9 A i0 A W, 340
~3a EWi, bE W, (M'(S, , M AI 3c p-b[M(S, a, c)]

V 3 c [M'(S, a, C) A CC(S, (c) U W?)])])

As it is known that M(S, a, z) can only be asserted by the above, an inductive proof is available
that c E R(S). This can therefore be replaced by

A N0$0 A W00
=*3dEW0EW,[(M'(S,a, A 3c3PbJM(S,a,c))

* ~V 3 c[M'(S, a, c) A CC(R(S), {4 UW,)])j)

This gives two alternative ways to satisfy the specification. We can satisfy M'(S, a, b) if -

M(S, a, b) V A3 [M(S, a, c)]. satisfying the other disjunct is harder than this because it re-
quirues satisfaction of a predicate containing R(S), so we prefer the first disjunct when it can
be smistyed. If we can't use the first disjunct, then we know 3 ci M(S, a, c)] so we have only to
satisfy CC(R(S), {c} U W,) for that c. This leads to:

satisfy(3 aE 141, bEW,
(M(S, a, b) A 3ccAbJM(S,a,c)) V 3c[M'(S,a,c) A CC(R(S),{c}U W,)])])

bind a to arb(WI), b to azrb(W,) In
If M'(S, a, b) V Z, [M(S, a, c)) then extlsfy(M'(S, a, b))

else satlsfy(M(S, a, c) CC(R(S), (c) U W,))

2.2.3.2 Alternative Data Structures

* It is now necessary to consider the options for storing M. The type of M is T x U -. U, where
U is the set of nodes iD the graph whose connected components are being determined, and T is
a set of sets such that U E T7 A (S ET A ISI > 1 =* R(S) ET A L(S) ET). The genesis of T is
such that each intermediate node plus the root of the tree has as its set of leaves some elemeat
of T if each element of U is represented by a leaf.

v . .WI

2 EXAMPLEtS OFP THEI[USE OF CLOSURES 2r.2. DirvtolAND-CONQUIBM WITH CLOSURES

Because of the type of M, we have four simple options to represent the mapping: We can

ropresent it in one processor's memory, in the memory of one processor per element of T, in one
pocessor per element of U, or in one processor per element of T X U. The first possibility would
lack concurrency and the last would require too many processors. The remaining possibilities
include using interior nodes of the tree (corresponding to elements of T) or leaves (corresponding
to elements of U) as the repository for information about parts of M.

Inspection of the specification yields the information that the tree node representing a set S must
be able to answer questions of the form 3 c[(M(S, a, c) A c 3 4i and find c suehthat M(S, a, c),
and must be able to satisfty(M(S, a, b)). This requires either keeping M(S, %, y) in S's node or
providing that node with appropriate closures.

That node must also be able to satlsfy(CC(L(S), M1,Wi)) to satisfy(CC(IR(S), M1,W,)), and
to satlsfy(CC(R(S), MI, cU W,)) given c E R(S) A CC(R(S), M, W,). This requires another
handful of closures.

S nce closures to satisftyCC(L(S), M', Wi)) and satldy(CC(R(S), M1, W,)) would require only
information available below L(S) and R(S) respectively, and since there is no control flow path
by which the need to satisd these two predicates would be evaded, we observe that each interior
nade requires a=arb W1, b=ab W,, and the closure)",'a satlsfy(.(R($), ,z)).

We are building a map that maps at most one leaf of the right subtree to each leaf of the left
s~ibtree. As described, the map is stored in the node that has the appropriate subtrees. However,
other alternatives are possible.

There are three natural places to store the assertion M(S, a, b). They are the node whose
subtree's leaves are S, leaf a and leaf b. If the information is stored in S, there must be one cell
for each leaf of the left subtree, and if the information is stored in a then there must be one cell
for each ancestor representing S. If the information is stored in b we have no limit (beyond the
s~ze of the problem) for ;he amount of storage that must be provided in b. We therefore reject
tis alternative.

Storing M in the node ideading S minimizes communication (information is where it is used)
making the algorithm take O(logn) steps. These steps are not constant-time steps because
they require access to a random access memory whose size is 0(n), itself an O(log n) operation2

* The algorithm therefore has an O(log2 n) running time.

The result could be transformed to place the fact of M(S, a, 4) in a. This would result in a
d:fferent algorithm, one that requires the leaves to supply closures to access and modify the
nmap.

I here is an interesting problem here. We would prefer that the leaves not have to know about
eements of T. It would therefore be necessary to have the M table within each leaf organised
in a certain order and to have use made of this information in that fixed order. This requires
thxat a "flame front" of subtree handling be arranged such that initially the root is the tree for
which you are trying to associate pairs of elements, and on succeeding subphases the level at
vshich we are trying to match descends. This algorithm has an 0(log2 n) execution time because
tiere are Ig n subphases, each of which is 0(log n).

26
O 2 The constant factor; are such that this is probably not a serious issue. If the problem instance is

arge, say > 210 or so, the RAM access time might be slow. However, much of the communication

P etween tree's processors would then be off-chip, making interprocessor communication even slower. If
r.he problem instance is small, the RAMs in each processor would be small enough to make their access
,.ime comparable to ordinary logical elements in the processor. Only for a truly immense problem
,nstance, say 230, would the memory access time dominate the communication time.

4 - 25-

'4q

2. EXAUFLlS OF TH USE Or CLOSUmaS 2.2. DIVIDI-ANmoCONQUII wiTi CLosunl s

We prefer the former data structure, in which M(S, a, b) is represented in S, because the issue
described in the previous paragraph does not arise. That structure will always be available to
us u .less the size of a change to M is proportional to the size of S, and this can not be because
the "ombination step of the divide and conquer scheme must be fast for the specification to
parailelize well in a tree structure.

2.2.3.3 Results of Storing the Map in the Leaves

This Subsubsection will discuss the algorithm's response to a single row of input.

The parallel structure is (informally) as follows:

There is a balanced binary tree of processors. The leaves of the tree correspond to the nodes
of the graph, and they are ordered in the order that corresponds to the arrivals of rows of the
adjacency matrix. (This last fact is not important.) For simplicity of exposition we will write
the following as if the leaves were rather than 'corresponded to' the nodes. For simplicity we
will usume that the entire adjacency matrix is supplied, rather than only a triangular matrix.

The leaf nodes build approximations to the answer as the algorithm grinds on. Each leaf node
has)ne memory cell for each ancestor. Consider the memory cell for ancestor a in leaf 1. It
is in-tialized to the distinguished value nl, and during the course of the algorithm it will come
to c,,ntain some " such that LCA(j, i)=a and i and" are known to be in the same connected
-omonent, provided that some such j exists.

The algorithm works as follows: A leaf is called active if its bit is set in the current row af
the adjacency matrix. After a row is read in, information is passed upward so each node can
dete-mine whether both of its subtrees contain active leaves, and what the highest and lowest
activ-e leaves are for such nodes. Information is than passed downward so each internal (or root)
nod& can determine whether it is the top such node. That node sends a message to those two
extr,,me nodes informing them of each other's identity.

The following cycle is repeated

TU ,computes spans, TD distributes span information and keeps track of the topuess of nodes.

TU istype TREE (i), iE[l,...,n] size n
root HAS minact, mazact, topp, liatop, ristop

HEARS leftion (uses upmin)
HEARS rightson (uses upmaz)
TALKS lefton (sends liatop)
TALKS rightion (sends ristop)

inter HAS minact, mazact, topp, listop, riatop
HEARS leftson (uses upmin)
REARS rightaon (uses upmaz)
TALKS lefteon (sends liatop)
TALKS rightson (sends riatop)
TALKS parent (sends upmin)

(sends upmaz)
leaf HAS activej, cematei,,)E ancestors

HEARS INPUT (uses ad "jE[l,. .])
TALKS parent (sends upmin)

(sends upmaz)

1* -26- -

2 EXAMPLISC Or Tiuz US3 Or CLOSURBS 2.2. DItwg-AND-CONqU3R WITH CLOSURBI

(.n TU.eafi,)
V j E acestors

ecmate.3 +- nl
~~E((1.)
temp '- j
upmin -upma: 4-If temp thes s else al
dmin .- downmin
dma: 4 downma:
other a-nl
pivot '-pivot

It dmin=i then other 4- dmaz
If dmaz=i then other 4- dmin
If other # nil then

It cemate,,.,.1 nU
then awaken o- il; cemate,,..., other
also awaken 4-ccmateLipiet

(in TMinter)
first establish my status

((Iran gel, Iran geh)) 4- range
((tran gel, rrangeh)) 4-rrange

range -((mara(rangeL, Iran geh) ,max(rran ge , rrangeh)))
livep -range,1 A ran ge2
;This is a once-per -minor -phase activity
while dstatus #4'dead

(n TU.root)
((IrangeL, Iran geh)) 4- range
((rran gel, rrangeh)) - rrange
range 4-((min(Lran gel. Iran geh) ,max(rran gel, rrangeh)))
Livep .- range1 A range, -

while ditatus #'dead

(in TD.i4ter)
If pst atus E{'live, 'tOp)

0 then status+-'five
range +- prange

eelfi livep then status4-'tp
range 4-range

else status-'dead
while status $6'dead

Ifn TD ir/e then sttus-'topag

else status*-'dend

-27-

2. EAMP.LS OF TH2 Uso or CLOSUJS 2.2. DVm3-AND-CONQUSR WITH CLOSUmeS

EacL minor phase the leaves sent up awakening info and get back a packet of info very similar
to tLe one they got in the beginning.

Eac: leaf, when it dies (finds out that the node just above it is dead) sends up an inits message.

When every node has done so the rood broadcasts its own form of "init' and the leaves read
from the I/O processor that contains the next row of the adjacency matrix.

Here we describe the overall behavior of the algorithm, considering the parallel structure to
be a single entity that can do things sequentially. To actually have this effect, there are

syncaronication problems, and below we describe a nodes' eye view of the situation, in_" '-ing
the wvork that each node has to do to coordinate with its neighbors.

Initi'lli2e: Have each node read in its element of the adjacency matrix. Those nodes
reading a '1' in the adjacency matrix turn themselves on, as does the node
whose index corresponds to that of the row of the matrix. Mark the root as
the 'focus'.

Survey: Every leaf sends information telling whether it is awake. Using this infor-
mation, the internal nodes below a focus find out which of them has awake
descendants in each of the two trees (whas two active subtrees'). This is a
straightforward "up" problem.

New root: The highest node with two active subtrees is determined. This is the Least
Common Ancestor (LCA) of active leaves. It becomes the new focus, nodes
between it and leaves become "active", and nodes above it but below and
including the old focus become "dead'.

Tournament: Select an arbitrary active leaf node in each of each focus's two subtrees.
Report the identities of the two leaves to their focus. Simultaneously report
the identity of the focus and of the other leaf to each of the two leaves.

Lookup: The leaves contain a variable mapping mapping their ancestors into a leaf
index or the distinguished value nil. The leaves look up the focus in this
mapping. If it is nil, they store the other leaf's identity. If the left leaf's value
is not nil, report the value to its focus.

New awakening: If its left tree reports a leaf ID per Lookup, a focus sends a message to that
leaf commanding it to awaken.

Refocus: Each focus sends a message to those of its children that are not leaves telling
them to become new focuses, and dies.

Rep.!at (Maybe): If not all ieaves have a dead parent, go back to New Root.

As can be seen above, the algorithm has several subphases, as the focus moves down towards the
leaves, and each of these subphases has several sub-sub-phases: Survey, New root, Tournament,
Lookup, New Awakening, Refocus, and Repeat (maybe). Internal nodes of the tree have the
stati:s dead, focus or live, and leaf nodes either have status awake or asleep. The behavior of
each node during each sub-sub-phase will be described.

Survey: Leaves tell parents whether they are active. Intermediate nodes: (live and focus only)
-* Get 5tatus from descendants. Remember and (live only) tell parent how many subtrees have one

or m ore active subtrees. Remember which subtree was active if exactly one was.

New root: If a focus has two active subtrees it tells its left (resp. right) child "focus above
you==(node), you are left (resp. right)*. If it has one, tell that one 'focus at or below you* and
the ,,ther *die'. It can't have none.

.7.

2 EXAMPLS OP THR Us. OP CLOSURSS 2.2. DrVIV-AND-CONQUI WITH CLOsUsI

Intermediate nodes below a focus (i.e., those nodes that are live) listen to their parents. If one
hears 'die' it dies. If one hears 'focus above =zxz ... * it relays the message and becomes or
rmains live. If one hears 'focus at or below' it acts like in the paragraph above.

Leaves that receive a *die' message send thei" parent an 'I died' message and prepare to read
t.ie next line of the adjacency matrix.

Active leaf nodes record the name of their focus.

Tournament and Lookup: Each leaf contains a mapping M relating the name of each of its
aacestors to either all or the index of a leaf. A sleeping leaf node sends nlU to its parent. An
awake leaf node i that receives a "focus above you=(node), you are left' message sends to its
prent either ((empty, i)) if M(node)=al, or ((loaded, M(node))). If it receives "focus above
y u=(node), you are right', it sends i to its parent.

A live internal node which receives all from both children sends the same to its parent. one
tVat receives something else from one child sends that value to its parent, and one that receives
n~n-nil values from both children sends either to its parent. The correctness of the algorithm
d 2es not depend on this :hoice, which can be random, pseudo-random, or consistent.

Each focus receives a message from each child. Say the right child's message is j. If the left
c:iild's message is ((empty, i)), then i(record, focus, i, j)) is sent to the left child and all is sent
t,) the right. If the left child's message is ((loaded, i)), then nil is sent to the left child and

awaken, i)) is sent to the right.

L ookup and New Awakening: Internal nodes relay parents' messages to their children.

V leaf node i receives ((record, focus, i, j)) it sets M(/ocus) -". If it receives ((awaken, i)) it
a makens. (If i doesn't match it does noshing.)

r efocus: Each focus sends its children a "become a focus' message and dies. A live node
rmceiving such a message from its parent changes its status to "focus'. A leaf receiving such a
n.essage form its parents sends the latter an "I died' message.

F:epeat (maybe): At all times, a node receiving two 'I died' messages sends one upward. If a
n >de receives a *become a focus' message it sends its children a "begin survey' message. Live
i,.termediate nodes relay such a message, and leaf nodes receiving a 'begin survey' melsage
ptocced as in Survey.

2.2.3.4 Results of Storing the Map in Internal Nodes

I he tree-structured algorithm of 2.2.2.3 uses O(loge n) time per row of the adjacency matrix.
(ore importantly, this constant factor includes a communication between adjacent nodes. It

i. impossible to do better assuming that the information required to reconstruct connected
c ,mponeuts is to be kept in the leaves and that there is only to be a logarithmic amount of
ii~format;oa in each leaf. The reason for this is that the action taken by the right subtree of a
gven node depends on information present only in the left subtree, and that the right subtree's
r,!cursive analysis of its pattern of leaves to be linked can, in turn, depend on the results of this
ft edback. We therefore have a logarithmic number of steps, each of which takes O(log n) time.

I' is possible to reduce the constant factor, but only by distributing the information differently.

Iristead of having a cell in each leaf for each of its ancestors, suppose we have a cell in each
aacestor for each of its leaves. The same number of cells are required, one for each leaf/ancestor

". + - ,+ . . + + -' ,• g,, ld* l

2. EXAMPLSS OF THI Use oF CLOSURUMS 2.2. DiVm3-ANO-CONquBx WITH CLOSUR•S

pair5. Each internal node contains a map which maps names of leaves of the left subtree in-o
either ail or names of leaves of the right subtree.

The overall view of the algorithm is as follows:

Each leaf sends its parent its name if its active, or al. Each intermediate or root nodes sends
its parent either the name of any active node it receives from its children, or nil if it receives nil
from both children. If it receives two names it chooses arbitrarily. Each intermediate node also
remtmbers what it received from its children.

In a-ldition, suppose it receives a name from both children. There are two cases. If the name
from the left node maps (in the node's internal mapping from leaves to values) into nil, make
it map into the name from the right node and do nothing else. If it maps into (say) i, send
awaken i to the right child and do nothing else.

If at. intermediate node receives an awaken i node from its parent, it checks to see whether i is
in iti right or left subtree. It also checks to see what it has received before.

If a node receives an awaken i message and has already received a name from i's subtree it sends
awaken i message to the appropriate child. If it hasn't so received it considers itself to have so
received. (This can involve reacting to further awaken messages, or it can involve looking up
either i (if s belongs in the left subtree) or the previously received name (if i was in the right
subt:ee and the previous name was in the left) in the mapping and either extending the mapping
or creating a new awaken message.)

The root sends its children "ok" when it's done. Intermediate nodes relay such "okay' messages.
Each leaf reads the next line of the adjacency matrix when it receives this ok, and starts a new
cycle.

The 'wrapup", where each leaf gets the name of a representative of its connected component,
is also faster under this arrangement. The root sends its right child its correspondences one by
one, followed by 'end". When a node receives a -+ b it replaces b - c (if it has one) by
a - c. This is not done for b -+ nil. Intermediate nodes also relay correspondences received
from parents. When an intermediate node recc:ves 'end* fromn its parent, it dumps its own
corr.spondeuces as they now stand and then sends its own 'end". A leaf node initialize& a cell
to it3 own name and a cell named b changes this value to a if it receives a -. 6. A leaf node
knows it has the right value when it sees 'end'.

3 and it should lay out reasonably nicely because the bigger nodes are closer to the root of the tree

-so

r * . ., ', , . . , ' . . J . .- ; : • ; ' J " '. . . -

Chfftc S

Use of Additional Techniques - Binary Addition

13.1 Notation

IT what follows, we will assume that a problem instance resides in vectors A and B, each
cantaining individual *bits' a, reap. bi for 0 : i 5 n-1. The two states of a bit are reprusented
by the values 0 and 1. This discussion is specialized to binary integers, but any radix can
be used by reinterpreting the logical operators as follows: 0 + (mod (the radix)), AM
),,.y[z + y _>(the radix)], -, X[(the radix)-zJ, and V= X,[z + y (the radix-)]. We
apply logical operators to the values 0 and 1, interpreting 0 as false and 1 as true. A represents

Eo < i: -I a,2l and B likewise. The answer is similarly represented in C. We will have
occasion to refer to carryi, the carry coming into position i. We use (as the symbol for

e,'xclusive OR*.

Cur starting point for all of the syntheses in this paper will be the specification:

we want to add A + B where A=a,_I ... aao and B similarly.

Vo i< n-i
c,=a, ® bi@ 3 [aj A b, A V [a,, V b,]]

Figure P. Our "Standard* Specification of Binary Addition

A derivation of this specification from the 'grade school' specification for addition

carryo=0

V 0 < i < n-I

cj=aj & b, & carry"
carryi+I=(carryi A (a, V b)) V (a, A b)

Figure 8. Grade School' Specification for Binary Addition j

J.

~~~~~~~~~~~~~~~~~.:..,...-./...-...,............... ................ .............:....::,.... -. -.1 . .-: : ..-



3. Bi imAY ADITION 3.2. CARRY LOOK-ARBAD CIRCUIT

Figure S. 'Grade School" Specification for Binary Addition

is bf yond the scope of this paper, although a derivation of the latter from the former will be

briej.y sketched.

Freqaent reference is made of a system called TRANSCONS. This is the TRANSformational
Coiccurrency Synthesizer (aescribed elsewhere [Klng-831 [KlngMayr,84) which we are develop-
ing i.t Kestrel. TRANSCONSis an architecture synthesis system which can be used to transform
high level specifications into parallel structures. Its features of interest here include the ability -o
syntaesize tree structured processor networks from specifications, and the ability to reformulate
concurrent computations by reorganizing the work differently among a collection of processors.

§3.2 Carry Look-ahead Circuit

Con-ider the definition of Figure 1. The problem with directly synthesizing solutions to this by
the nethods of TRANsCONS resides in the nesting of quantifiers such that the bound variable
of the outer quantifier is one end of the range of the inner one. The reason this is a problem
is that it forces the computation of O(n2) boolean values, namely Yj<k<[ak V bkJ for each
0 < j < i < n-I (a total of n(n-1)/2 (i,j) pairs).

§13.2.1 Quantifier Levelling

When the following equivalences are applied successively (brief proofs appear in the Appendix)

V [P(z)] max[- P(z)j _ 1 (V-to maz)

3 [P(z) A F(u)!_ z] 3 IP(z)] (constraint-to-binder)
Z<- s -

3 [,P(z)] =max[Pfrfl 2! 1 (3 -to-max)~<u

-82- 7



we get the following sequence of assignments to ci (changes underlined):

cj~j b 03 [a, A bA V [G Vb 411

jk<i

Sc 1j=a,®b,® (9 3a jb m -ai A by] i

cie=; ® bi max(ai A b,1 max[- (ah V bk,)]

It should be observed that the first transformation solved the basic problem of the need to com-
pute 0(n 2) values, and that after the last transformation it is possible to do both enumerations
it, parallel. The bound variable of one enumeration is no longer an endpoint of the range of the
o..ber. This means that where we would previously have had approximately n2 /2 data items to
c-insider, we now have approximately 2n.

We now have

V0<i<n-i
®iai( b, (8 max(al A b~i 2: max(IIIIIII(ak V 60)1

It is possible to express this as an inequality between corresponding elements of the results of
twvo parallel prefix computations as follows:

VO0< i< n-1
* and,=4i A bi

norj= -(a, V bi)
mazland,= It 'ni, then i else -oo

mazlnori= It nori then i else -oo
mazatsdj= max [maziandil

maznorj= max [mazinoril

Cjaj( b, ®& (maxondi a maznori)

TRANSCONS -Rill be able to synthesize the usual parallel prefix tree structure [Drowning-801
for each of the two lines marked by an asterisk above. Most of the details of this synthesis are
beyond the scope of this paper, but the tree structure comes from uses of divide- and-conquer.
The intermediate steps, taken from INlugMay".4], are shown in the Appendix.

There are two parallel prefix trees in the addition parallel structure; one for the variable named
mazand and another for maz nor. The overall structure is shown below.



3. BiRJARY ADITIO 3.2. CARRY LOOKAINAD CIRCUIT

C. B3  A3  A2 9 2  C2 CC B: A, AO BC CO
Figure 4. Synthesized Looic-Ahead Circuit for Binary Addition

There are two important differences between this structure and standard ones [Hwang.79].

0 Because the parallel prefix trees are required to handle integers in the interval 10, n], the size
of the nodes and the width of the data paths within the trees are 8(lg(n)). In the standard
network it would be 8(1). This can be alleviated by some careful reasoning, to be described
below.

0, Because of the nature of the parallel prefix network synthesized by TRANSCONS, each node is
pE rtially responsible for the choreography in its local region. The importance of this fact is that
eit her the nodes need be big enough to participate in an asynchronous data transfer protocol
with a handshake, or a global clock must be provided. This is not a serious problem because
other parallel prefix networks could have been used (and incorporated into TRANSCONS),
and because a three- or five-inverter clock (ConMead-801 can easily be included on the chip if
n cessary.

153.2.2 Data Path Width Reduction

To reduce the width of the data paths and still use a parallel prefix network, an associative
operation with constant range and domain must be used.

Now either maxo 5 2 < ,[mazland]= maxo < 5 j+1 [mazlandil or maxo <.< j+ [mazlandj-l+
1, axd similarly for mazl nor. A case analysis could show that we would have the following table:

and.!. nor+. tu...

maand,+ 1 mnor 1 ~ true Ifalse
and true true
nor false false

both true true

neither true false

(*th s is impossible but knowledge of this fact is unnecessary for the argument)

The effect of and,+i, nor, 1 , andi 2 and nori+2 on the truth of mazand 1 2  maznor,+ 2

give'i mazand, > maznori can also be summarized below. (Here the impossible combinations

. .,. .. ,..,-"....-7
. . . . . . . . . .. . . . . . . ..... 1



3 fNARY ADDITION 33. RIPPL-CARRY AND BIT SICRIAL CIRCUITS

ha ve been omitted for brevity.) _

mazandi maznori re as
trefalse

none true false

andi+ 1 true true

" ori+ false false

andi+2 true true

andi+2, andi+ I true true

andi+, nori+I true true

nori+2 ifalse false

-" nori+2, andi+ 1 false false

nori+ 2 , nor. 1  false false

We see 2Use of this form of reasoning is justified by the properties of max, that the value
ot a max expression depends on a single extreme element that each string of inrut bit
pairs is an operator that can do one of three things: it can act like a single pair of bits
bth of which are true (called (and) below, like a single pair of bits both of which are
false (called (nor)), or it can act like a pair one of which is true (called (other)). The bi-
nary operator e=X.,y[if y=(and) then (and) elseif y=(nor) then (nor) else x] is associa-
tive, and that if the identity of this operator is considered to be (other) then mazandi >
maznor=(E5o j5 j =(and)). This is precisely what was needed: an operator, amenable to
parallel prefix computation, with finite range and domain.

Use of a specification based on this operator will yield a network similar to Figure 3, except that
there will only be a single parallel prefix tree, each bit's carry will be used directly rather than
computed from the two parallel prefix trees, and (of course) the widths of the data paths and
Vie sized of the nodes will be smaller.

§3.3 Ripple-carry and Bit Serial Circuits

Consider our 'standard specification' of Figure 1. If we ap. the quantifier levelling of
Subsection 4.1, we get:

Vo< i<n-1

ci=ai 9 b, 0 max[a. A by] > max[-(ak V bk)]5<f -- <i

Ve repeat the reasoning for representing maz o 5 ' <_ +%[P(z) in terms of maz: < j:5 iP(z)
and P(i + 1) (see Subsection 4.2). We also apply the next argument of that Subsection, giving
a recurrence for the max... > max... expression. That expression has a single free variable,
I and we will call its value carryi.

%-35-

% . . . . . .



I
3. Bz. iAY ADDITION 3.3. RIPOLI-CARRY AND BIT SBRIAL CIRCUITr

Conider the recurrence carryo=fase and carry,+ I--(carryi A (ai V 6)) V (ai A b,)3More
precsely, carryi+=lif a, A b, then true elseif - (aj V b,) then false else carryi. . This leads
immediately to the grade school specification of Figure 2.

Using the techniques of TRANSCONS (assigning a processor to each value, developing an
intezconnection graph, and specifying the appropriate work for each processor), we immediately
get t he ripple-carry unit shown below.

C ' A C' 5, A1  C, i, As C' S, A,

Figure 5. Ripple Carry Parallel Structure

A te.:hnique called aggregation [Klng-831 is applicable. This technique replaces a related series
of p: ocessing elements by a single element that receives a series of related data. The circuit of
Figure 4 is 3n indexed series of identical modules, and identifying corresponding nodes of the
serie of modules gives the bit serial addition circuit shown below.

Figure 6. Serial Adder

V V.

"'o .

(a 3 6

-I8--i



Ref erences

:AKS-831 M. Ajtai, J. Koml6s and E. Ssomer6di "An O(n log n) Sorting Network*
Proceedings of the 155k ACM Symposium on Theory of Computing, pp. 1-9,
1983

ArmGe-781] W. Armstrong and J. Gec.oi 'Adaptation Algorithms for Binary Tree
Networks' University of Montreal Publication 289, 1978

ArmGec-79] W. Armstrong J. Gecsei 'Architecture of a Tree-Based Image Processor"
Tech Report, University of Montreal, Publication 291, 1979

Atkflew-TT] R. Atkinson and C. Hewitt *Specification and Proof Techniques for
Serializers" MIT Al Lab Tech Memo 438, August 1977

Barter-82] C. Bartet 'Policy-Protocol Interaction in Composite Processes' MIT AI Lab
Memo 692, September 1982

Oatcher-68] K. Batcher *Sorting Networks and their Applications' AFIPS Spring Joint
Computer Conference, pp. 307-314, 1968

BenKung-79j J. Bentley and H. Kung "Two Papers on a Tree-Structured Parallel
Computer' Carnage-Mellun Uruersity Tech Report CMU-CS-79-142,
September 1979

BSdJ-82] R. Byrd, S. Smith and S. de Jong 'An Actor-Based Programming System"
IBM Research Report #RC 9204 (#40424), January 1982 II

!CbanMls-78] K. Chandy and J. Misra 'Specification, Synthesis, Verification and
Performance Analysis of Distributed Programs; a Case Study; Distributed
Simulation' University of Tezas, Austin Tech Report TR-86, November 1978

'ChenMead-82] M. Chen and C. Mead "Formal Specifications of Concurrent Systems'
Technical report 5042:TR:82, California Institute of Technology, 1982

Choo-82] Y. Choo 'Hierarchial Nets - A Structured Petri Network Approach to
Concurrency' Cal Tech Report TR:5044:82, November 1982

Church-51] A. Church "The Calculi of Lambda-Conversion' Annals of Mathematical
Studies # 6, Princeton University Press

Clarke-78] E. Clarke "Concurrent Programs are Easier to Verify than Sequential
Programs' Duke University Tech Report CS-1978-6, July 1978 "1

6

'. . ... . -... ..- .. . -. * . . . f4 . j . . * . .*



Run fIHC,5Rfzxitacss

[Ci 2ger-S1 W. Clirger "Foundations of Actor Semantics, PhD Thesis, MIT A! Lab
Tech Report A!- TR-633, May 1981

[CIW-791 K. Chung, F. Luccio and C. Wong 'A Tree Storage Scheme for Manetic
Bubble Memories' IBM Research Report #RC 8116 (#34797), December
1979

(P[CuiPachl-82] K. CilJ. Pachl *Folding and Unrolling Systolic Arrays' University of
Waterloo Research Report CS-82-11, April 1982

[D tias-TS J. Dennis 'First Version of a Data Flow Procedure Language' Project MA C,
MIT, May 1975

[Ed wards-T8] N. Edwards 'Condgurable Pipelined Application Logic Systems' IBM
Research Report #RC 7313 (#1451), September 1978

[Fit h-83] Faith E. Fich "New Bounds for Parallel Prefix Circuits' Proceedings of the
1 5 h ACM Symposium on Theory of Computing, pp. 100-109, 1983

[FlsbPat-80] M. Fischer and M. Paterson "Optimal Tree Layout* University of
Wahington Tech Report 80-03-02, February 1980

(Ga:Paul-8.1 Z. Gaiil and W. Paul "An Efficient General-Purpose Parallel Computer'
Journal of the ACM, el. 30 #2, pp. 360-387, April 1983

[Gatlerl-801 C. Galtieri "Architecture for a Consistent Decentralized System' IBM"
Research Report #RJ2846(36132), June 1980

[Grfflths-75] P. Grifiiths "SYNVER: Ar Automatic System for the Synthesis and
Verification of Synchronous Processes' Harvard PhD Thesis and Tech Report
TR-20-75, June 1975

(Ba'k-751 M. HacK "Decidability Questions for Petri Nets' PhD Thesis, MIT MAC
Tech Report MAC- TR-161, December 1975

(Ha-lpern-81] B. Hailpern 'Modular Verification of Concurrent Programs'IBM Research
Report #RC 9130 (#39971) , November 1981

[Raistead.781 R. Hastead Jr. "Multiple-Processor Implementations of Message-Passing
Systemc', Masters Thesis, MIT Tech Report MIT-LCS-TR-198, January
1978

(Ha.bison-801 S. Harbison "A Computer Architecture for the Dynamic Optimization of
High-Level Language Programs* PhD Thesis, CMU, Tech Report CMU-C.-
80-143, September 1980

* [HS-83] P. Hocbschild, E. W. Mayr, and A. Siegel 'Techniques for Solving Graph
Problemrs in Paralel Environments' Proceedings of the. 24 Symposiusm on
Found'ionS of Computer Science to appear November 1983

(Ka t.71 Elaine Kant "Efficiency Considerations in Program Synthesis: A Knowledge-
Based Approach' , Ph. D. Thesia, Department of Computer Science,
Stanfor.i University, 1979

[Kllig-83] R. Kin- 'Research on Synthesis of Concurrent Computing Systems, -.

Proceedings of the I0 Symposium on Computer Architecture, pp. 39-46,
1983

[KlngBrown-83] R. King and T. Brown 'Proposal for Research On Automatic Synthesis

!', -$8 -

• .. ,' "



of Tree-Structured Concurrent Computing Systems', Kestrel Tech Report
#KES.L.83.1, 1983

KungLeh-791 H. Kung and P. Lehman uSystolic (VLSI) Arrays for Relational Database
Operations' Carnegie Mellon University Tech Report CMU-CS-80-114,
October 1979

P :unsLc-T61 H. T. Kung and Charles E. Leiserson "Systolic Arrays for VLSI' Soore
Matriz Proceeding, 1978

;LadFlsh-80 R. Ladner and M. Fischer 'Parallel Prefix Computation' Journal of the

ACAL, vol. 27 #4, pp. 831-838, 1980
Lelghton-811 F. T. Leighton *A Layout Strategy for VLSI Which is Provably Good'

Proceedings of the 14u r ACM Sympoium on Theory of Computing, pp. 85-
97,.1982

[LelSax-19 C. Leiserson and J. Saxe Optimiing Synchronous Systems' Proceedings of
the 2 ad Annual Symposum on the Foundations of Computer Science, Pp.

Octo3er 191i.

uLelSaxe-82] C. Leiserson and . Saxe. 'Optimizing Synchronous Systems' MIT Tech
tReport MoTeLCSM .215, March 1982

;Lengauer-82 C. Lengauer 'A Methodology for Programming with Concurrency' U. of

Toronto Tech Report CSRG-14, April 1982

Lipal--1] R. J Lipton and J. Valdes 'Census Functions: an Approach to VLSI Upper
Bounds' , Proceedings of the 21 4 IEEE Symposium aon the Foundation. of
Computer Science, pp. 13-2 1981

einer.-81 R. Milner 'Algebras for Communicating Systems' Tech Report, Univereity
of Edinburgh # CSR-25-78, April 1978

MirWlnx-84] W. Miranker and A. Winkler "Spacetime Representation of Computational
Structures' Computing *, 1984 Pp. 93-114

Page-79] R. Paige 'Expression Continuity and the Formal Differentiation of
Algorithms* Technical Report #15, Courant Institute, New York, pp. 269-
658, 1979

Rambaugh-T] . Rambaug 'A Paralel Asynchronous Computer Architecture for Data
Flow Programs'ePhD Thesis, MIT MAC Tech Report MAC-TR-150, May
1975

(Ramcbandan-37 C. Ramchandani 'Analysis of Asynchronous Concurrent Systems by timed

Petri Nets' PhD Theis, MIT MAC Tech Report MAC-TR-120, July 1973

!"RelVal-81 J. Reif and L. Valiant 'A Logarithmic Time Sort for Linear Size Networkn
Harvard Tech Report # TR-13-82, 1982

'Selhwartz.80J J. Schwartz *Uitracomputers' ACM TOPLAS, vol. 2 #4 PP. 484-521,
Octrber 1980

Smith-831 D. Smith "Top-Down Synthesis of Simple Divide & Conquer Algorithms'
Tech Report, Naval Postgraduate School, Montery, CA 93940, November
1983

Smbth-831 D. Smith "Derived Preconditions and Their Use in Program Synthesis' Tech

FAA9

Ig78
-RmhnaIT]C acadn Aayi f'Aycrnu ocretSsesb ie

Pet...s.....Thei., - .A Tee Reor 24 -TR10 uy



Report, Nev l Postgraduate School, Mordery, CA 93940, November 1983

[ThTiault-82J D. Theriault "A Primer for the Act-I Language" MIT A! Lab Memo 672,
April I,82

[Weng-79] K. Weng 'An Abstract Implementation for a Generalized Data Flow
Language'PhD Thesis, MIT Tech Report MIT-LCS-TR-228, May 1979

rl [Wc lpe?-S2] P. Wolper "Synthesis of Communicating Processes from Temporal Logic
Specifications" Stanford Tech Report STAN-CS-82-9.05, August 1982

(g -40-

2. ..



6

FILMED

3-85

DTI


